Design of Air-Cooled Heat Sink for a 55-kW Power Inverter With Laminar Flow

Author:

Arimilli Rao V.1,Nejad Ali Hossein1,Ekici Kivanc1

Affiliation:

1. Mechanical Aerospace and Biomedical Engineering Department, The University of Tennessee, 414 Dougherty Engineering Building, Knoxville, TN 37996-2210 e-mail:

Abstract

A methodology is developed for the design of an air-cooled 55-kW-rated inverter heat sink. The design constraints are that the power density (PD) must meet or exceed the values associated with liquid-cooled systems of the same power rating, and that the maximum surface temperatures be less than 200 °C. To keep the pressure drop low relative to turbulent flow designs, a laminar flow regime is chosen. A preliminary design that satisfies the PD constraint exactly, and the thermal requirements approximately, is determined. To ensure that the thermal requirements are met by the design configuration, a thermal-fluid analysis based on a three-dimensional conjugate heat transfer model is conducted. Overall, energy balance errors (OEBEs) as high as 15% were encountered in the numerical models. These errors are reduced by taking advantage of the symmetry between fins using a typical unit cell model. A new simplified approach for the simulations was identified which involved modeling fins as highly conductive layers instead of solid domains. This further reduced the OEBEs to less than 0.004%. The design factors considered in this study include effective cooling surface area, fin thickness, fin spacing, and fin height. The results show that the maximum surface temperatures can be kept below 200 °C for safe operation of SiC devices in the inverter module while increasing the PD.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3