Computational Modeling of a Solar Thermoelectric Generator

Author:

Ofoegbu Chukwunyere1,Mazumder Sandip2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210

2. Fellow ASME Department of Mechanical and Aerospace Engineering, The Ohio State University, Suite E410, Scott Laboratory, 201 West 19th Avenue, Columbus, OH 43210 e-mail:

Abstract

Solar thermoelectric generators (STEGs) convert solar energy to electricity. The solar energy is first used to heat an absorber plate that serves as the high temperature reservoir. Power is generated by connecting the hot reservoir and cold (ambient) reservoirs with a pair of p- and n-doped thermoelectric legs. Experimental studies have shown that the efficiency of a STEG can reach values of about 5% if the entire setup is placed in near-vacuum conditions. However, under atmospheric conditions, the efficiency decreases by more than an order of magnitude, presumably due to heat loss from the absorber plate by natural convection. A coupled fluid–thermal–electric three-dimensional computational model of a STEG is developed with the objective of understanding the various loss mechanisms that contribute to its poor efficiency. The governing equations of mass, momentum, energy, and electric current, with the inclusion of thermoelectric effects, are solved on a mesh with 60,900 cells, and the power generated by the device is predicted. The computational model predicts a temperature difference (ΔT) of 16.5 K, as opposed to the experimentally measured value of 15 K. This corresponds to a peak power of 0.031 W as opposed to the experimentally measured peak power of 0.021 W. When only radiative losses are considered (i.e., perfect vacuum), the ΔT increases drastically to 131.1 K, resulting in peak power of 1.43 W. The predicted peak efficiency of the device was found to be 0.088% as opposed to the measured value of 0.058%.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference12 articles.

1. Solar Thermoelectric Generation Using Bismuth Telluride Alloys;Sol. Energy,1979

2. High-Performance Flat-Panel Solar Thermoelectric Generators With High Thermal Concentration;Nat. Mater.,2011

3. Design of a Solar Thermoelectric Generator,2013

4. Theoretical Efficiency of Solar Thermoelectric Energy Generators;J. Appl. Phys.,2011

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3