Existence and Stability of Localized Oscillations in 1-Dimensional Lattices With Soft-Spring and Hard-Spring Potentials

Author:

Panagopoulos Panagiotis1,Bountis Tassos2,Skokos Charalampos3

Affiliation:

1. School of Applied Mathematical and Physical Sciences, National Technical University of Athens

2. Department of Mathematics and Center for Research and Applications of Nonlinear Systems (CRANS), University of Patras, GR-26500 Patras, Greece

3. Department of Mathematics and Center for Research and Applications of Nonlinear Systems, (CRANS), University of Patras, GR-26500 Patras, Greece and Research Center for Astronomy and Applied Mathematics, Academy of Athens, Soranou Efesiou 4 GR-11527, Athens, Greece

Abstract

In this paper, we use the method of homoclinic orbits to study the existence and stability of discrete breathers, i.e., spatially localized and time-periodic oscillations of a class of one-dimensional (1D) nonlinear lattices. The localization can be at one or several sites and the 1D lattices we investigate here have linear interaction between nearest neighbors and a quartic on-site potential Vu=12Ku2±14u4, where the (+) sign corresponds to “hard spring” and (−) to “soft spring” interactions. These localized oscillations—when they are stable under small perturbations—are very important for physical systems because they seriously affect the energy transport properties of the lattice. Discrete breathers have recently been created and observed in many experiments, as, e.g., in the Josephson junction arrays, optical waveguides, and low-dimensional surfaces. After showing how to construct them, we use Floquet theory to analyze their linear (local) stability, along certain curves in parameter space (α,ω), where α is the coupling constant and ω the frequency of the breather. We then apply the Smaller Alignment Index method (SALI) to investigate more globally their stability properties in phase space. Comparing our results for the ± cases of Vu, we find that the regions of existence and stability of breathers of the “hard spring” lattice are considerably larger than those of the “soft spring” system. This is mainly due to the fact that the conditions for resonances between breathers and linear modes are much less restrictive in the former than the latter case. Furthermore, the bifurcation properties are quite different in the two cases: For example, the phenomenon of complex instability, observed only for the “soft spring” system, destabilizes breathers without giving rise to new ones, while the system with “hard springs” exhibits curves in parameter space along which the number of monodromy matrix eigenvalues on the unit circle is constant and hence breather solutions preserve their stability character.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3