Curing-Induced Debonding and Its Influence on Strength of Adhesively Bonded Joints of Dissimilar Materials

Author:

Zhu XiaoBo12,Li YongBing34,Ni Jun5,Lai XinMin32

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration,

2. Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

3. Professor State Key Laboratory of Mechanical System and Vibration,

4. Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:

5. Professor College of Engineering, University of Michigan, 1023 H. H. Dow Building, 2350 Hayward Street, Ann Arbor, MI 48109

Abstract

Adhesive bonding is thought to be a suitable method for joining dissimilar materials, such as aluminum to steel in multimaterial car-body manufacturing, but when it is combined with other joining methods, such as spot welding or self-piercing riveting, curing the adhesive at elevated temperature induces problems, such as distortion and adhesive debond. In this study, the effects of debonds were investigated by examining load–displacement curve and dissipated energy in lap-shear and peeling tests of artificially debonded joints. The results showed that the debonds caused by curing are of dog-bone type or stripe failure type, and both of them have little influence on the peel strength, but have strong influence on the shear strength and energy absorption. For the lap-shear specimens, the debonds reduce the bonding area, leading to the reduction in maximum shear force. For the double cantilever beam specimens, the debonds produce little influence on maximum peeling force but obvious variations in the peeling load curve. The energy absorption values are inversely proportional to the debonds due to the reduction in bonding area. The overall results from this research facilitate the understanding of the debonding mechanism caused by curing-induced distortion by revealing two types of debond patterns in dissimilar material bonding joints and their influences on joint performance.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference25 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3