Coupling of In-Plane Flexural, Tangential, and Shear Wave Modes of a Curved Beam

Author:

Kang B.1,Riedel C. H.2

Affiliation:

1. Mechanical Engineering Department, Indiana University - Purdue University Fort Wayne, Fort Wayne, IN 46805-1499

2. Mechanical Engineering Department, Lawrence Technological University, Southfield, MI 48075-1058

Abstract

In this paper, the coupling effects among three elastic wave modes, flexural, tangential, and radial shear, on the dynamics of a planar curved beam are assessed. Two sets of equations of motion governing the in-plane motion of a curved beam are derived, in a consistent manner, based on the theory of elasticity and Hamilton’s principle. The first set of equations retains all resulting linear coupling terms that includes both static and dynamic coupling among the three wave modes. In the derivation of the second set of equations, the effects of Coriolis acceleration and high-order elastic coupling terms are neglected, which leads to a set of equations without dynamic coupling terms between the tangential and shear wave modes. This second set of equations of motion is the one most commonly used in studies on thick curved beams that include the effects of centerline extensibility, rotary inertia, and shear deformation. The assessment is carried out by comparing the dynamic behavior predicted by each curved beam model in terms of the dispersion relations, frequency spectra, cutoff frequencies, natural frequencies and mode shapes, and frequency responses. In order to ensure the comparison is based on accurate results, the wave propagation technique is applied to obtain exact wave solutions. The results suggest that the contributions of the dynamic and high-order elastic coupling terms to the response of a thick curved beam are quite significant and that these coupling terms should not be neglected for an accurate analysis of a thick curved beam with a large curvature parameter.

Publisher

ASME International

Subject

General Engineering

Reference18 articles.

1. Vibration of Planar Curved Beams, Rings, and Arches;Chidamparam;ASME Appl. Mech. Rev.

2. Recent Research on Vibrations of Arch-type Structures;Laura;Shock Vibration Digest

3. Vibration of Curved Beams;Markus;Shock Vibration Digest

4. Wave Motion in a Planar Curved Beam;Kang

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3