Tool Oscillation and the Formation of Lobed Holes in a Quasi-Static Model of Reaming

Author:

Bayly Philip V.1,Young Keith A.2,Halley Jeremiah E.2

Affiliation:

1. Washington University

2. The Boeing Company

Abstract

Abstract A quasi-static model of reaming is used to explain oscillation of the tool during cutting and the resulting roundness errors in reamed holes. Tools with N evenly-spaced teeth often produce holes with N+1 or N-1 “lobes”. These profiles correspond, respectively, to forward or backward whirl of the tool at N cycles/rev. Other whirl harmonics (2N cycles/rev, e.g.) are occasionally seen as well. The quasi-static model is motivated by the observations that relatively large oscillations occur at frequencies well below the natural frequency of the tool, and that in this regime the wavelength of the hole profile is largely independent of both cutting speed and tool natural frequency. In the quasi-static approach, inertial and viscous damping forces are neglected, but the system remains dynamic because regenerative (time-delayed) cutting and rubbing forces are included. The model leads to an eigenvalue problem with forward and backward whirl solutions that closely resemble the tool behavior seen in practice.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized modeling of drilling vibrations. Part II: Chatter stability in frequency domain;International Journal of Machine Tools and Manufacture;2007-07

2. Generalized modeling of drilling vibrations. Part I: Time domain model of drilling kinematics, dynamics and hole formation;International Journal of Machine Tools and Manufacture;2007-07

3. Modelling nonlinear regenerative effects in metal cutting;Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences;2001-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3