Affiliation:
1. University of Michigan
Abstract
Abstract
In this paper, the free response of bladed disks with intentional mistuning is considered in detail. A simple lumped-parameter model of a bladed disk is employed. Intentional mistuning is included by applying a sinusoidal variation to the nominal blade stiffnesses. It is shown that if the intentional mistuning harmonic number and the number of blades have a common integer factor greater than one, then the eigenvalue problem reduces to a set of smaller problems. It is found that the ratio of intentional mistuning strength to the interblade coupling strength is a key parameter for the free response. As this ratio increases, the modes become localized. More importantly, the modes of the intentionally mistuned system have several non-zero nodal diameter components, in contrast to the tuned system which has pure nodal diameter modes. Furthermore, if only random mistuning is present, each mode of the bladed disk assembly still retains a strong nodal diameter component. However, the modes of the system with intentional mistuning and random mistuning tend to have more evenly distributed nodal diameter components. This shows why intentional mistuning can be effective in reducing the maximum blade forced response for engine order excitation.
Publisher
American Society of Mechanical Engineers
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献