Analysis and Validation of a Unified Slip Factor Model for Impellers at Design and Off-Design Conditions

Author:

Qiu Xuwen1,Japikse David1,Zhao Jinhui1,Anderson Mark R.1

Affiliation:

1. Concepts NREC, 217 Billings Farm Road, White River Junction, VT 05001

Abstract

This paper presents a unified slip model for axial, radial, and mixed-flow impellers. The core assumption of the model is that the flow deviation or the slip velocity at the impeller exit is mainly originated from the blade loading near the discharge of an impeller and its subsequent relative eddy in the impeller passage. The blade loading is estimated and then used to derive the slip velocity using Stodola’s assumption. The final form of the slip factor model can be successfully related to Carter’s rule for axial impellers and Stodola’s slip model for radial impellers, making the case for this model applicable to axial, radial, and mixed-flow impellers. Unlike conventional slip factor models for radial impellers, the new slip model suggests that the flow coefficient at the impeller exit is an important variable for the slip factor when there is significant blade turning at the impeller discharge. This explains the interesting off-design trends for slip factor observed from experiments, such as the rise of the slip factor with flow coefficient in the Eckardt A impeller. Extensive validation results for this new model are presented in this paper. Several cases are studied in detail to demonstrate how this new model can capture the slip factor variation at the off-design conditions. Furthermore, a large number of test data from more than 90 different compressors, pumps, and blowers were collected. Most cases are radial impellers, but a few axial impellers are also included. The test data and model predictions of the slip factor are compared at both design and off-design flow conditions. In total, over 1650 different flow conditions are evaluated. The unified model shows a clear advantage over the traditional slip factor correlations, such as the Busemann–Wiesner model, when off-design conditions are considered.

Publisher

ASME International

Subject

Mechanical Engineering

Reference20 articles.

1. Some Theoretical Aerodynamic Investigations of Impellers in Radial and Mixed-Flow Centrifugal Compressors;Stanitz;Trans. ASME

2. A Review of Slip Factors for Centrifugal Impellers;Wiesner;ASME J. Eng. Power

3. A New Slip Factor for Centrifugal Impellers;Paeng;Proc. Inst. Mech. Eng., Part A

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3