SAMS: Stochastic Analysis With Minimal Sampling—A Fast Algorithm for Analysis and Design Under Uncertainty

Author:

Mawardi A.1,Pitchumani R.1

Affiliation:

1. Advanced Materials and Technologies Laboratory, Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269-3139

Abstract

Design of processes and devices under uncertainty calls for stochastic analysis of the effects of uncertain input parameters on the system performance and process outcomes. The stochastic analysis is often carried out based on sampling from the uncertain input parameters space, and using a physical model of the system to generate distributions of the outcomes. In many engineering applications, a large number of samples—on the order of thousands or more—is needed for an accurate convergence of the output distributions, which renders a stochastic analysis computationally intensive. Toward addressing the computational challenge, this article presents a methodology of S̱tochastic A̱nalysis with M̱inimal S̱ampling (SAMS). The SAMS approach is based on approximating an output distribution by an analytical function, whose parameters are estimated using a few samples, constituting an orthogonal Taguchi array, from the input distributions. The analytical output distributions are, in turn, used to extract the reliability and robustness measures of the system. The methodology is applied to stochastic analysis of a composite materials manufacturing process under uncertainty, and the results are shown to compare closely to those from a Latin hypercube sampling method. The SAMS technique is also demonstrated to yield computational savings of up to 90% relative to the sampling-based method.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference24 articles.

1. Solution to a Class of Minimax Decision Problem Arising in Communication Systems;Basar;J. Optim. Theory Appl.

2. A Constrained Min-Max Algorithm for Rival Models of the Same Economic System;Rustem;Math. Program.

3. An Algorithm for the Inequality Constrained Discrete Min-Max Problem;Rustem;SIAM J. Optim.

4. Optimum Design of Mechanical Systems Involving Interval Parameters;Rao;ASME J. Mech. Des.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3