Flow Analyses in a Single-Stage Propulsion Pump

Author:

Lee Y. T.1,Hah C.2,Loellbach J.2

Affiliation:

1. David Taylor Model Basin, Bethesda, MD 20084

2. NASA and ICOMP/NASA-Lewis Research Center, Cleveland, OH 44135

Abstract

Steady-state analyses of the incompressible flow past a single-stage stator/rotor propulsion pump are presented and compared to experimental data. The purpose of the current study is to validate a numerical method for the design application of a typical propulsion pump and for the acoustic analysis based on predicted flowfields. A steady multiple-blade-row approach is used to calculate the flowfields of the stator and the rotor. The numerical method is based on a fully conservative control-volume technique. The Reynolds-averaged Navier–Stokes equations are solved along with the standard two-equation k–ε turbulence model. Numerical results for both mean flow and acoustic properties compare well with measurements in the wake of each blade row. The rotor blade has a thick boundary layer in the last quarter of the chord and the flow separates near the trailing edge. These features invalidate many Euler prediction results. Due to the dramatic reduction of the turbulent eddy viscosity in the thick boundary layer, the standard k–ε model cannot predict the correct local flow characteristics near the rotor trailing edge and in its near wake. Thus, a modification of the turbulence length scale in the turbulence model is applied in the thick boundary layer in response to the reduction of the turbulent eddy viscosity.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3