Affiliation:
1. Turbomachinery Laboratory, Institute of Energy Technology, Swiss Federal Institute of Technology, Zu¨rich, Switzerland
Abstract
A three-dimensional unsteady flow computation has been performed for a transonic first turbine stage under the influence of streaks of hot gas exiting the combustion chamber. Realistic flow conditions are obtained by using an unequal stator-to-rotor pitch, a single-streak/multistator channel configuration, and periodic boundary conditions. The resulting unsteady shock wave system and the hot streak migration as well as the shock wave/streak interaction are presented and discussed. In addition, the time average of the periodic unsteady solution is analyzed and compared with a steady-state computation. The steady-state solution is analyzed and compared with a steady-state computation. The steady-state solution matches the time-averaged one in terms of the pressure field and the maximum stagnation temperature on the rotor blade surface. However, the rotor blade temperature patterns are different with a stronger radial secondary flow present in the time-averaged solution due to the retention of the circumferential streak variations at the stator/rotor interface.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献