Influence of Electric Current on the Temperature Rise and Wear Mechanism of Copper–Graphite Current-Carrying Friction Pair

Author:

Zhou Yuankai1,Du Mengdi1,Zuo Xue1

Affiliation:

1. School of Mechanical Engineering, Jiangsu University of Science and Technology, Mengxi Road, Jingkou District, Zhenjiang 212003, China

Abstract

Abstract In order to study the influence of current on the temperature rise and wear mechanism of the copper–graphite friction pair, the pin-disc current-carrying friction experiments were carried out under different current conditions. The friction coefficient, temperature, and wear topography were measured, and the energy dispersive spectroscopy (EDS) analysis was conducted as well. The results show that the temperature of the friction pair rises rapidly at first, then the rising speed slows down, and finally reaches dynamic thermal equilibrium in the process of test. The temperature rise at the stable stage increases with the current. The main wear mechanism under low current is material spalling, and it turns to melt ejection and arc erosion under high current. The change of the lubricating film causes the complex wear behavior. With the increase of the current, the amount of transferred graphite increases, but the arc ablation becomes severe, and the graphite lubrication film gradually ruptures, which in turn increases the friction coefficient and makes the wear more severe. The results have a great significance for the anti-friction and wear-resistant design of the current-carrying friction pair.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3