Ballistic Impact of Structural Steels at Low Temperatures

Author:

Holmen J. K.12,Thomesen S.34,Perez-Martin M. J.4,Hopperstad O. S.34,Børvik T.34

Affiliation:

1. Enodo AS, NO-7034 Trondheim, Norway;

2. Structural Impact Laboratory (SIMLab), Department of Structural Engineering, NTNU—Norwegian University of Science and Technology, NO-7034 Trondheim, Norway

3. Structural Impact Laboratory (SIMLab), Department of Structural Engineering, NTNU—Norwegian University of Science and Technology, NO-7034 Trondheim, Norway;

4. Centre for Advanced Structural Analysis (SFI CASA), NTNU, NO-7034 Trondheim, Norway

Abstract

Abstract Steels are usually stronger at low temperatures than at high temperatures. But low temperatures are, particularly in combination with high strain rates and high stress triaxiality ratios, known to cause embrittlement. The common understanding is that the ductility of steels decreases dramatically below a threshold temperature known as the ductile-to-brittle transition temperature. This study explores the ballistic performance of Strenx 960 Plus steel plates at both low temperatures and room temperature. We describe a ballistic setup where target plates were cooled down to as low as −60 °C before we present results from ballistic impact tests with three different projectile types. The ballistic limit velocities from tests at low temperatures were higher than the ballistic limit velocities from tests at room temperature, indicating that brittle fracture does not take place. An analytical approach based on the Johnson–Cook constitutive relation, the Cockcroft–Latham ductile failure criterion, and a simple brittle fracture criterion is presented. The model suggests that ductile fracture prevails for most realistic material state histories, both in the ballistic impact tests as well as for quasi-static and dynamic tensile tests. This supports previous observations that brittle fracture is unlikely to occur in modern steels even when subjected to rapid loading and low temperatures.

Funder

Norges Forskningsr\xE5d

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3