Water-Column Separation at Two Pumping Plants

Author:

Brown R. J.1

Affiliation:

1. Technical Engineering Analysis Branch, Bureau of Reclamation, Denver, Colo.

Abstract

Results of field measurement of transients in two pump discharge lines show that the pressures were greater than had been predicted during design, and a theory and method of analysis are developed which explains the time-history of the transients measured. The field measurements were undertaken because of the complexity of the phenomena and because very little measured data were available. Results are presented graphically along with analytical solutions. Conclusions drawn were: (a) The inherent difficulty of prediction of water-column separation effects is further complicated by the uncertainty about complete pump operating characteristics and actual moment of inertia of pumps and motors; (b) the effects of air and gases entrained in solution in the water must be considered in the analytical solution; and (c) entrained air can have a detrimental effect on the water-hammer transient, i.e., larger pressure surges in the discharge line and higher reverse speeds of the pumps can be caused by its presence.

Publisher

ASME International

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3