Thermal Conductivity of Complex Hydrocarbon Systems at Pressures Up To 1000 MPa

Author:

Kutcherov Vladimir12,Chernoutsan Alexey3,Kolesnikov Anton3,Grigoriev Boris4

Affiliation:

1. KTH Royal Institute of Technology, Stockholm 11428, Sweden;

2. Department of Physics, Gubkin Russian State University of Oil and Gas, Moscow 119991, Russia e-mail:

3. Department of Physics, Gubkin Russian State University of Oil and Gas, Moscow 119991, Russia

4. Gazprom VNIIGAZ LLC, Moscow Region, Leninsky District, Moscow 115583, Russia

Abstract

The thermal conductivity of five samples of crude oil and one sample of gas condensate was measured by the transient hot-wire technique. The measurements were made along isotherms (245, 250, 273, 295, 320, 336, and 373 K) in the pressure range from atmospheric pressure up to 1000 MPa and along isobars (at 0.1, 100, 200, 300, 400, 500, and 1000 MPa) in the temperature range 245–450 K. It was observed that the thermal conductivity of the samples investigated strongly depends on the pressure and rises with increasing pressure for all the temperatures. At a certain pressure, the temperature coefficient of thermal conductivity reverses from negative to positive. The pressure at which this reversal was observed varied in the range of 300–380 MPa.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3