Uncertainties Propagation and Global Sensitivity Analysis of the Aeolian Vibration of OPGW Cables

Author:

Campos Damián Federico1,Ajras Andres Elías1,Goytiño Lucas Guillermo1,Piovan Marcelo Tulio2

Affiliation:

1. Conductor Testing Laboratory, Department of Applied Mechanics, National University of Comahue Neuquén , Neuquén 8300, Argentina

2. Center for Theoretical and Applied Research in Mechanics, Bahía Blanca National Technological University , Buenos Aires Province 8000, Argentina

Abstract

AbstractThis paper is devoted to evaluating the quantification of uncertainty involved in the study of Aeolian vibrations of optical ground wire (OPGW) cable systems installed on overhead power transmission lines. The energy balance method (EBM) is widely used to estimate the severity of steady-state Aeolian vibrations. Although the EBM requires some experimental characterization of system parameters (as indicated by international standards), it is necessary to mention that such a procedure is connected with uncertainties which makes it difficult for the proper homologation of the cable systems. In this article, the parametric probabilistic approach is employed to quantify the level of uncertainty associated with the EBM in the study of Aeolian vibrations of OPGW. The relevant parameters of the EBM (damper properties, cable self-damping, and the power imparted by the wind) are assumed as random variables whose distribution is deduced by means of the maximum entropy principle. Then a Monte Carlo simulation is performed, and the input and output uncertainties are contrasted. Finally, a global sensitivity analysis is conducted to identify the Sobol' indices. Results indicate that parameters related to self-damping and damper are the most influential on uncertainty and output variability. In this sense, the present framework constitutes a powerful tool in the robust design of damper systems for OPGW cables.

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Reference35 articles.

1. Transmission Line Reference Book: Wind-Induced Conductor Motion;EPRI,2006

2. Mechanical Models of Helical Strands;ASME Appl. Mech. Rev.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3