High-Pressure Laminar Flame Speeds and Markstein Lengths of Syngas Flames Diluted in Carbon Dioxide and Helium

Author:

Turner Mattias A.1,Petersen Eric L.1

Affiliation:

1. J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University , College Station, TX 77845

Abstract

Abstract New laminar flame speed and burned-gas Markstein length data for H2–CO–O2–CO2–He mixtures have been measured from spherically expanding flames. Experiments were conducted at 10 atm and room temperature for H2:CO ratios ranging from 2:1 to 1:4 and for overall CO2 mole fractions from 0% to 30%. CO2 dilution had little effect on Markstein length, but CO2 dilutions of 10%, 20%, and 30% caused average reductions in flame speed of 47%, 73%, and 89%, respectively, regardless of H2:CO ratio. The study was designed to isolate the dilution effect of CO2 on flame speed, and a detailed analysis using the FCO2 method was used to show that the chemical-kinetic participation of CO2 was responsible for up to 20% of the reduction in flame speed. Hence, the majority (80% or more) of the reduction in flame speed due to CO2 is from the thermal effect. Accurate flame speed predictions were produced by five different chemical kinetics mechanisms for most conditions, with the slight exception of high-CO, high-CO2 mixtures. A thorough sensitivity analysis highlighted the larger effect of CO2 dilution on the important kinetics reactions than the effect of changing H2:CO. Sensitivity analysis also showed that the chain branching reaction H2O + O ⇌ OH + OH could be modified (albeit beyond its uncertainty) to achieve more accurate flame speed predictions, but also indicated that further improvement of flame speed modeling would require changes to many lesser reactions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference69 articles.

1. Benefiting From the Wide Fuel Capability of Gas Turbines: A Review of Application Opportunities

2. Gasification Technology to Produce Synthesis Gas,2009

3. Analysis of Main Gaseous Emissions of Heavy Duty Gas Turbines Burning Several Syngas Fuels;Fuel Process. Technol.,2011

4. Issues for Low-Emission, Fuel-Flexible Power Systems;Prog. Energy Combust. Sci.,2001

5. Assessing the Predictions of a NOx Kinetic Mechanism on Recent Hydrogen and Syngas Experimental Data;Combust. Flame,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3