Affiliation:
1. Japan Atomic Energy Agency, Oarai, Japan
2. NESI Corporation, Ibaraki, Japan
3. University of Tokyo, Tokyo, Japan
Abstract
Abstract
For safety assessment or design of a steam generator (SG) of a sodium-cooled fast reactor, it is important to evaluate the effects of a multiphase flow involving sodium-water reaction. If pressurized water/water-vapor leaks from a tube, it forms a corrosive, high-temperature, and high-velocity jet, and may cause failure of the adjacent tubes. The occurrence of tube failure on many tubes will lead to failure of the boundary between the primary and secondary cooling loops.
The numerical analysis code, LEAP-III, has been developed to evaluate water leak rate considering the effects of the above-mentioned phenomena with short computational time. In some cases, however, the current LEAP-III provides excessive conservativeness due to its temperature distribution evaluation model.
In order to reduce this excess, we have developed a new Lagrange particle method with several engineering approaches. We also performed test analyses which simulate time development of the vapor jet with chemical reaction in a SG. The results of the developed method were compared with ones of the multi-dimensional multiphase thermal hydraulic analysis code, SERAPHIM which considers compressibility and chemical reaction. Through the test analyses, the basic capability of the developed method was confirmed.
Publisher
American Society of Mechanical Engineers
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献