Evaluation of Serpent Capabilities for Hyperfidelity Depletion of Pebble Bed Cores

Author:

Robert Yves1,Fratoni Massimiliano1

Affiliation:

1. University of California, Berkeley, California, United States

Abstract

Abstract Accurate burnup calculation in pebble bed reactor cores is today necessary but challenging. The continuous advancement in computing capabilities make the use of Monte Carlo transport codes possible to efficiently study individual pebbles depletion without making strong assumptions. The purpose is to eliminate unnecessary typical assumptions made in existing codes, while being flexible and suitable for commonly available computing machines. Among the available codes, Serpent 2 provides extremely useful tools to make pebble beds modeling and simulation efficient. The explicit stochastic geometry definition handles irregular pebble beds with comparable performances to regular lattices. Optimization modes controlling the use of unionized energy grids, cross-sections pre-calculation and flux calculation through spectrum collapse or direct tally lead to high flexibility and optimal memory usage while limiting calculation time. Automated burnable materials division is a useful tool to lower the memory requirements while quickly generating the geometry and materials. Finally, parallelization and domain decomposition allow for decreasing unreasonable memory constraints for large cores. This work thus explores the possibilities of Serpent 2 when applying depletion in pebble beds, compares the optimization modes and quantifies the simulation time and memory usage depending on the conditions of the calculation. Overall, the results show that Serpent 2 is well adapted to the use of small to large cores calculations with commonly available resources.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3