Aeroelastic Stability of Axially Moving Webs Coupled to Incompressible Flows

Author:

Vaughan Merrill1,Raman Arvind1

Affiliation:

1. Dynamic Systems and Stability Laboratory, School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088

Abstract

The aeroelastic flutter of thin flexible webs severely limits their transport speeds and consequently the machine throughputs in a variety of paper, plastics, textiles, and sheet metal industries. The aeroelastic stability of such high-speed webs is investigated using an assumed mode discretization of an axially moving, uniaxially tensioned Kirchhoff plate coupled with cross and machine direction flows of a surrounding incompressible fluid. The corresponding aerodynamic potentials are computed using finite element solutions of certain mixed boundary value problems that arise in the fluid domain. In the absence of air coupling, the cross-span mode frequencies tightly cluster together, and the web flutters via mode coalescence at supercritical transport speed. Web coupling to an initially quiescent incompressible potential flow significantly reduces the web frequencies, substantially modifies the mode shapes, and separates the frequency clusters, while only marginally affecting the flutter speed and frequency. The inclusion of machine direction base flows significantly modifies the web stability and mode shapes. Cross machine direction flows lead to the flutter with vanishing frequency of very high cross-span nodal number modes, and the unstable vibration naturally localizes at the leading free edge. These results corroborate several previous experimental results in literature and are expected to guide ongoing experiments and the design of reduced flutter web handling systems.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference23 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measuring nonuniform web tension for roll-to-roll manufacturing of flexible and printed electronics;Flexible and Printed Electronics;2021-08-11

2. Vibrations of Air-Coupled Web Systems;Journal of Vibration and Acoustics;2020-07-28

3. Added-Mass Based Efficient Fluid–Structure Interaction Model for Dynamics of Axially Moving Panels with Thermal Expansion;Mathematical and Computational Applications;2020-01-22

4. Stability of Axially Moving Strings, Beams and Panels;Stability of Axially Moving Materials;2019-09-06

5. Thermomechanics of axially moving webs in roll-to-roll manufacturing processes;International Journal of Heat and Mass Transfer;2019-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3