Slow Steady Viscous Flow of Newtonian Fluids in Parallel-Disk Viscometer With Wall Slip

Author:

Yeow Y. Leong1,Leong Yee-Kwong2,Khan Ash3

Affiliation:

1. Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria, Australia 3010

2. School of Mechanical Engineering, The University of Western Australia, Crawley, Western Australia, Australia 6009

3. Department of Civil and Chemical Engineering, RMIT University, Victoria, Australia 3000

Abstract

The parallel-disk viscometer is a widely used instrument for measuring the rheological properties of Newtonian and non-Newtonian fluids. The torque-rotational speed data from the viscometer are converted into viscosity and other rheological properties of the fluid under test. The classical no-slip boundary condition is usually assumed at the disk-fluid interface. This leads to a simple azimuthal flow in the disk gap with the azimuthal velocity linearly varying in the radial and normal directions of the disk surfaces. For some complex fluids, the no-slip boundary condition may not be valid. The present investigation considers the flow field when the fluid under test exhibits wall slip. The equation for slow steady azimuthal flow of Newtonian fluids in parallel-disk viscometer in the presence of wall slip is solved by the method of separation of variables. Both linear and nonlinear slip functions are considered. The solution takes the form of a Bessel series. It shows that, in general, as a result of wall slip the azimuthal velocity no longer linearly varies in the radial direction. However, under conditions pertinent to parallel-disk viscometry, it approximately remains linear in the normal direction. The implications of these observations on the processing of parallel-disk viscometry data are discussed. They indicate that the method of Yoshimura and Prud’homme (1988, “Wall Slip Corrections for Couette and Parallel-Disk Viscometers,” J. Rheol., 32(1), pp. 53–67) for the determination of the wall slip function remains valid but the simple and popular procedure for converting the measured torque into rim shear stress is likely to incur significant error as a result of the nonlinearity in the radial direction.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3