Convective Heat Transfer to a Confined Impinging Array of Air Jets With Spent Air Exits

Author:

Huber A. M.1,Viskanta R.1

Affiliation:

1. Heat Transfer Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

This investigation has examined the influence of spent air exits located between the jets on the magnitude and uniformity of the local heat transfer coefficient for a confined 3×3 square array of axisymmetric air jets impinging normally to a heated surface. The heat transfer coefficient was measured using a 0.025-mm-thick stainless steel impingement surface coated with liquid crystals. The temperature distribution along the surface was determined by measuring the reflected wavelength of light from the liquid crystal with the use of bandpass filters and an electronic digitizer board. The effect of small nozzle-to-plate spacings (0.25 and 1.0 diameters) commonly used in material processing applications was also considered. Average Nusselt numbers are presented for a Reynolds number range of 3500 to 20,400 along with radial distributions of the local Nusselt number. The local Nusselt number distributions illustrate the uniformity of the convective heat transfer coefficient and contribute to understanding the variations in the magnitude of the average Nusselt number. Results have shown that the addition of spent air exits increased the convective heat transfer coefficient and changed the location of the optimal separation distance. In addition, significant enhancement of the uniformity and magnitude of the heat transfer coefficient was observed at the 0.25 and 1.0 jet diameter nozzle-to-plate spacings when compared to a 6.0 diameter spacing.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3