Numerical Investigation of Charging and Discharging Processes of a Shell and Tube Nano-Enhanced Latent Thermal Storage Unit

Author:

Nedjem Khaoula1,Teggar Mohamed1,Ismail Kamal Adbel Radi2,Nehari Driss3

Affiliation:

1. Laboratory of Mechanics, University of Laghouat, Laghouat 03000, Algeria

2. Department of Energy, School of Mechanical Engineering, University of Campinas, Sao Paulo 13083-970, Brazil

3. Smart Structure Laboratory, University Center of Ain Temouchent, Ain Temouchent 46000, Algeria

Abstract

Abstract Phase change materials (PCMs) generally suffer from low thermal conductivity which limits their application in thermal systems. The effective thermal conductivity may be improved by including fins, metallic powders, fine wires, and nanoparticles. The objective of this study is to investigate the thermal performance of graphene nanoplatelets (GNPs) dispersed in small quantities in 1-tetradecanol (C14H30O) PCM. This nano-enhanced PCM (NPCM) is placed in the annular space of a shell and tube in a solar thermal storage unit. The numerical simulations have been carried out using a numerical model based on the enthalpy-porosity and the control volume methods. The numerical model has been successfully validated by comparison with experimental data available in the literature. The numerical results showed that the higher the GNPs concentration, the lower the stored energy. The higher the GNPs concentration the shorter the discharging time. But, during the charging process, though the reduction in the melting time by 9.5% for GNPs concentration increase from 0 to 1 wt%, the melting time increased in contrast by 10.5% for GNPs content increasing from 1 to 3 wt%. For the GNPs concentration of 3 wt%, the heat transfer rate enhancement was limited by an undesirable increase in viscosity which led to weak natural convection and hence a longer charging time. Thus, the GNPs concentration of 1 wt% showed better thermal performance than that of 3 wt% concentration. These results may guide the improvement of solar thermal storage by dispersing GNPs in PCM.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3