On Finite Elastic-Plastic Deformation of Metals

Author:

Naghdi P. M.1,Trapp J. A.2

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, Calif.

2. Computer Science Center, Aerojet Nuclear Company, Idaho Falls, Idaho

Abstract

This paper is concerned with a special class of response functions for some of the constitutive equations in the nonlinear isothermal theory of elastic-plastic materials. Detailed attention is given to the development of special forms for the free energy and the stress response, motivated mainly by the mechanical behavior of ductile metals in the plastic range and in the presence of finite strains. After obtaining a properly invariant representation for the free energy response (and hence also for the stress) as a function of certain (easily interpretable) measures of deformation, the results are specialized to isotropic materials and are expressed in terms of the invariants of kinematic measures. Some special cases are elaborated upon and, by way of illustration, the influence of plastic deformation on the material properties of the stress response in a simple tension test is discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3