Transient Heat Exchanger Response With Pressure Regulated Outflow

Author:

Regulagadda P.1,Naterer G. F.1,Dincer I.1

Affiliation:

1. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada

Abstract

This paper analyzes the thermal performance of a co-current flow heat exchanger with transient gas outflow. The temperature distributions of the working fluid, heating fluid, and the wall over the length of the heat exchanger are predicted by an integral formulation. The heat transfer rates are determined at various stages of the heat exchanger operation. An integral formulation of the nondimensionalized governing equations is solved numerically, using a time-marching algorithm. The temperature distributions of the working fluid and the wall have an exponential increase from the inlet to the outlet of the heat exchanger. The heating fluid shows an initial decrease and subsequent increase of temperature. A base model for the step change in the mass flow of the working fluid is developed and compared against past data for purposes of validation. In addition, results are presented and discussed for the time-varying performance, during pressure regulated gas outflow from the heat exchanger.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3