The Controller Output Observer: Estimation of Vehicle Tire Cornering and Normal Forces

Author:

Ozkan Basar1,Margolis Donald1,Pengov Marco2

Affiliation:

1. Department of Mechanical and Aeronautical Engineering, University of California, Davis, CA 95616

2. PSA Peugeot Citroën, Route de Gizy, VV141, 78943 Vélizy Villacoublay Cedex, France

Abstract

A controller output observer is used for estimating specific outputs from a physical system through the use of alternative outputs that are measured. In most cases these estimated signals can be measured directly using sensors. However, some outputs are either not possible to measure directly or alternative outputs are just easier to measure. This paper focused on a method to estimate immeasurable quantities, in near real time, through the use of physical models and measured quantities. This can be done through the use of classical observers as introduced by Luenberger in 1964 (“Observing the state of a Linear System,” IEEE Trans. Mil. Electron., 8, pp. 74–80) However, since observers estimate the system states, one would have to again estimate the sought after outputs by another method, such as a constitutive relationship. The method proposed here shows that certain signals can be estimated directly by using a controller but without using a constitutive law. These estimated quantities are inputs to a model of the real system. In other words, these inputs drive the observer model. A promising use for the controller output observer is estimation of tire forces in vehicles. This is because tires are very difficult to model accurately, and even if the tire is modeled accurately, the surface conditions of the road must be known to predict tire forces. The controller output observer does not require a model of the tires. The method is tested using a vehicle model. Real measurements from a vehicle are used to show that the method succeeds in estimating quantities from the real vehicle.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference28 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Dynamic State Estimation for the Neighborhood System of Connected Vehicles;SAE International Journal of Vehicle Dynamics, Stability, and NVH;2023-07-28

2. References;Robust Control;2022-01-28

3. A Simple and Effective Excitation Force Estimator for Wave Energy Systems;IEEE Transactions on Sustainable Energy;2022-01

4. Estimation of Tire Normal Forces including Suspension Dynamics;Energies;2021-04-22

5. Advanced Estimation Techniques for Vehicle System Dynamic State: A Survey;Sensors;2019-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3