Affiliation:
1. Georgia Institute of Technology, Atlanta, GA
Abstract
This paper reports experimental data on flashback and lean blowout characteristics of H2/CO/CH4 mixtures. Data were obtained over a range of fuel compositions at fixed approach or burned flow velocity, reactant temperature, and combustor pressure at several conditions up to 4.4 atm and 470 K inlet reactants temperature. Consistent with prior studies, these results indicate that the percentage of H2 in the fuel dominates the mixture blowout characteristics. These blowout characteristics can be captured with classical Damko¨hler number scalings to predict blowoff equivalence ratios to within 10%. Counter-intuitively, the percentage of hydrogen had far less effect on flashback characteristics, at least for fuels with hydrogen mole fractions less than 60%. This is due to the fact that two mechanisms of “flashback” were noted: rapid flashback into the premixer, presumably through the boundary layer, and movement of the static flame position upstream along the centerbody. The former and latter mechanisms were observed at high and low hydrogen concentrations. In the latter mechanism, flame temperature, not flame speed, appears to be the key parameter describing flashback tendencies. We suggest that this is due to an alteration of the vortex breakdown location by the adverse pressure gradient upstream of the flame, similar to the mechanism proposed by Sattelmayer and co-workers [1]. As such, a key conclusion here is that classical flashback scalings derived from, e.g., Bunsen flames, may not be relevant for many parameter regimes found in swirling flames.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献