Technical Economic Evaluation of a System for Electricity Production With CO2 Capture Using a Membrane Reformer With Permeate Side Combustion

Author:

Manzolini G.1,Dijkstra J. W.2,Macchi E.1,Jansen D.2

Affiliation:

1. Politecnico di Milano, Milan, Italy

2. Energy Research Centre of the Netherlands, Petten, The Netherlands

Abstract

The paper investigates the application of a novel concept, based on a membrane reactor with permeate side combustion (MRPC), to capture CO2, in a natural gas fuelled power plant. The MRPC combines the steam reforming reaction on the feed side and hydrogen separation through a dense hydrogen selective membrane, with combustion of part of the permeated hydrogen, using a mixture of steam, nitrogen and air as a sweep gas. The remaining hydrogen permeated is used in the gas turbine of the combined cycle. The unconverted fuel in the high pressure CO2 rich stream exiting from the membrane reactor is burned with oxygen to permit carbon dioxide sequestration. The thermodynamic performance and economic prospects of a power plant incorporating MRPC are investigated, with a sensitivity analysis on several parameters involved. The membrane surface area required is calculated using a membrane reactor model. The final results indicate a carbon capture ratio of 100% and a net overall efficiency close to 50%. If compared to a conventional natural gas fuelled combined cycle without CO2 capture, this technology leads to an increase in cost of electricity of about 30% and a CO2 avoidance cost of about 30 €/tCO2.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3