A Feasibility Study of Life-Extending Controls for Aircraft Turbine Engines Using a Generic Air Force Model

Author:

Behbahani Al1,Jordan Eric A.1,Millar Richard2

Affiliation:

1. Air Force Research Laboratory, Wright-Patterson AFB, OH

2. Naval Air Systems Command, Patuxent River, MD

Abstract

Turbine engine controllers are typically designed and operated to meet required or desired performance criterion within stability margins, while maximizing fuel efficiency. The U.S. Air Force turbine engine research program is seeking to incorporate sustainable cost reduction into this approach, by considering a life-cycle design objective if the life of the engine is considered as an objective during the design of the engine controller. Specifically during aircraft takeoff, the turbine engines are subject to high temperature variations that aggravate the stress of the material used in their construction and thus a negative effect in their life spans. Therefore, the control strategy needs to be re-evaluated to include operating cost, and extending the life of the engine is one way to reduce that. Life-Extending Control (LEC) is an area that deals with control action, engine component life usage, and designing an intelligent control algorithm embedded in the FADEC. This paper evaluates the LEC, based on critical components research, to demonstrate how an intelligent engine control algorithm can drastically reduce the engine life usage, with minimum sacrifice in performance. Finally, a generic turbine engine is extensively simulated using a sophisticated non-linear model of the turbine engine. The paper concludes that LEC is worth consideration and further research should include development of the damage models for turbine engines, and experimental research that could correlate the damage models to actual damage for turbine engines. This could lead to implementation of online damage models in real-time that will allow for more robust damage prevention.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3