Affiliation:
1. University of Hartford, West Hartford, CT
2. Hamilton Sundstrand
3. Pratt & Whitney, East Hartford, CT
Abstract
Compact heat exchanger designs are commonly used in many gas turbine engine applications. Though effective in their heat transfer function, they are often heavy, costly, and poor aerodynamic performers causing a reduction in engine efficiency. In addition, they are complex to manufacture and often prone to leakage. Finned surface heat exchangers are an attractive alternative to traditional compact designs. They can perform efficiently both aerodynamically and thermally. Such units could be mounted in the bypass fan stream of a gas turbine engine where large amounts of heat must be rejected from vital engine fluids such as oil and fuel. This research project investigated the efficiency of various fin designs applied to an oil cooler. Highly conductive materials, such as carbon composites were explored, and then compared to aerospace-quality aluminum alloys. Thermal, aerodynamic, economic, and weight performance comparisons between the carbon and aluminum fin structures were quantified. A three-dimensional numerical estimation of the final design concept was conducted using ANSYS. This research project specifically investigated the design of a finned surface air-oil heat exchanger. Design parameters included a total heat rejection of 2000 Btu/min and an oil temperature change of 100 degrees Fahrenheit with an inlet oil temperature of 300 degrees. The first design phase was conducted using an aerospace quality aluminum alloy. Internal and external flow convection theory was studied closely as well as basic heat exchanger and fin design concepts. A heat exchanger program was developed in Excel, automating the heat transfer based on basic geometric inputs. The program allowed easy iterations of fin/oil passage designs to meet the performance requirements and optimize the heat exchanger’s weight. The final iteration was then numerically modeled in ANSYS. The predicted heat transfer rate was then compared to the numerical estimation in ANSYS. The Excel program was validated by producing results within 2% of the ANSYS predicted solutions. Upon completion of the aluminum design. highly conductive materials, such as carbon composites were explored and implemented. The final designs of this project (both Aluminum and Carbon-Carbon) identified a new method of heat rejection at a significantly lower weight impact to the engine. The aluminum design had a total core weight of 25.4 lb while the carbon-carbon final design had a total core weight of 12.8 lb. In addition, both units have the potential to be incorporated within an existing engine case exposed to the bypass air stream, which may result in an additional weight savings.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献