Adaptive Model Based Control of Aircraft Propulsion Systems: Status and Outlook for Naval Aviation Applications

Author:

Fuller James W.1,Kumar Aditya2,Millar Richard C.3

Affiliation:

1. Pratt & Whitney Aircraft

2. GE Global Research Center

3. U.S. Navy, Patuxent River, MD

Abstract

The control of military aircraft propulsion and associated aircraft systems continue to become more demanding, in response to the operational needs of new and existing aircraft and missions. High performance aircraft operate in multiple modes. They are complex and require complex propulsion systems that provide precise and repeatable performance: safely, dependably, and cost effectively. To support these requirements, propulsion control systems must manage multiple effectors based on multiple operating parameters through interactive processes. The scopes of control extends beyond the gas turbine engine to the inlet, exhaust, power and bleed extraction, electrical power systems, thermal & environmental management, fuel systems, starting, accessories, and often propellers, rotors or lift fans. Modern propulsion control systems are increasingly integrated with the aircraft flight controls and the distinction is becoming less & less meaningful. Within the gas turbine, variable geometry and active control of turbo-machinery and auxiliary systems proliferate to relax mechanical design constraints and enable designs with increased thrust to weight ratios, reduced fuel burn and increased durability. Digital controls provide crisp and repeatable responses and improve aircraft reliability and availability, but further enhancements are needed as military aircraft become more capable and versatile (e.g., V-22 and F35). The control system must be aware and appropriately respond to component degradation and damage, optimally managing conflicting constraints and goals. Modern propulsion systems are becoming more profoundly multivariable and include multiple effectors to meet multiple goals. They are multivariable because they are cross-coupled, where each effector can affect multiple goals. In addition, these multiple goals, (e.g., performance, life, operating margin) may be conflicting and need to be traded off, and the best trade off will vary with mission. With predictable and rapid increases in computational capability in Full Authority Digital Electronic Controls, the industry is moving forward to address these needs through model based control, control that manages propulsion and aircraft systems with optimal control responses derived from detailed real time models of component behavior. Since the component characteristics change significantly during a service interval, and yet longer time on wing is necessary, these control systems must sense degradation and damage to multiple components and adapt to it. This paper describes current approaches and NAVAIR plans to develop, mature and deploy this technology, while touching on other potential applications.

Publisher

ASMEDC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3