Development of a 2-D Compressor Streamline Curvature Code

Author:

Templalexis Ioannis1,Pilidis Pericles2,Pachidis Vassilios2,Kotsiopoulos Petros1

Affiliation:

1. Hellenic Air Force Academy, Dekeleia Air Base, Greece

2. Cranfield University, Cranfield, UK

Abstract

Two-dimensional compressor flow simulation software has always been a very valuable tool in compressor preliminary design studies, as well as in compressor performance assessment, operating under uniform and non-uniform inlet conditions. In this context, a new streamline curvature (SLC) software has been developed capable of analyzing the flow inside a compressor in two dimensions. The software was developed to provide great flexibility, in the sense that it can be used as: a) A performance prediction tool for compressors of a known design, b) A development tool to assess the changes in performance of a known compressor after implementing small geometry changes, c) A design tool to verify and refine the outcome of a preliminary compressor design analysis, d) A teaching tool to provide the student with an insight of the two-dimensional flow field inside a compressor and how this could be effectively predicted using the SLC method, combined with various algorithms and loss models, e) A 2-D compressor model that can be integrated into a conventional 0-D gas turbine engine cycle simulation code for the investigation of the influence of non-uniform radial pressure profiles on whole engine performance. Apart from describing in detail the design, structure and execution of the SLC software, this paper also stresses the importance of developing robust, well thought-out software and highlights the main areas a potential programmer should focus on in order to achieve this. This manuscript highlights briefly the programming features incorporated into the development of software before continuing to explain the internal workings of individual algorithms. The paper reviews in detail the set of equations used for the prediction of the meridional flow field. Numerical aspects of the application procedure of the full radial equilibrium equation are examined. The loss models incorporated for subsonic and supersonic flow are presented for design and off design operating conditions. Deviation angle rules are presented, together with the parameters for quantifying the diffusion process. Moreover, the methods used for the prediction of surge and choke are discussed in detail. Finally, the end wall boundary layer displacement thickness calculation is discussed briefly, in conjunction with the blockage factor computation. The code has been validated against experimental results which are presented in this paper together with the strong and weak points of this first version of the software and the potential for future development.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3