A Study of the Diffusion Brazing Process Applied to the Single Crystal Superalloy CMSX-4

Author:

Schnell A.1,Stankowski A.1,de Marcos E.1

Affiliation:

1. ALSTOM (Switzerland), Ltd., Baden, Switzerland

Abstract

The requirement for economic reconditioning of the latest ALSTOM gas turbine generation with Single Crystal (SX) superalloys has lead to the development of advanced repair processes such as Diffusion Brazing or Transient Liquid Phase bonding. Diffusion Brazing (DB) of conventionally cast polycrystalline turbine components has been carried out for many years but the requirement for this joining and repair technique to be applied to DS and SX superalloys has emerged only more recently. The main concern for the use of a braze-repair process for the more highly loaded SX components is the ability to guarantee sufficient thermal and mechanical integrity throughout the component lifetime. Such high strength braze joints in SX superalloys can be achieved by combining a brittle phase-free and high γ′ content microstructure, while maintaining the crystallographical orientation of the SX parent material within the repair zone. Prior to the brazing process, a suitable crack surface preparation is essential, and this is achieved by the employment of specifically optimized Fluoride Ion Cleaning (FIC) process. This guarantees the complete removal of oxide from the crack surfaces and promotes the flow of the braze alloy for complete filling down to the crack tip. This paper presents the development of the DB process which has been specifically tailored for the repair of SX superalloys. The principles of the diffusion brazing process as applied to the CMSX-4 superalloy are discussed and the parameters which control the brazing kinetics are outlined. The optimization of the brazing heat treatment cycle will be presented. This paper also demonstrates the retention of the single crystal micro-structure in the repair zone, and demonstrates the test procedures developed to achieve the required thermal and mechanical integrity of braze repairs for application in SX gas turbine components.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3