A Neural Network Based Adaptive Observer for Turbine Engine Parameter Estimation

Author:

Shankar Praveen1,Yedavalli Rama K.1

Affiliation:

1. Ohio State University, Columbus, OH

Abstract

Estimation of immeasurable parameters such as thrust and turbine inlet temperatures in turbine engines constitutes a significant challenge for the aircraft community. A solution to this problem is to estimate these parameters from the measured outputs using an observer. Currently existing technologies rely on Kalman and extended Kalman filters to achieve this estimation. This paper presents an adaptive observer that augments the linear Kalman filter with a neural network to compensate for any nonlinearity that is not handled by the linear filter. The neural network implemented is a Radial Basis Function Network that is trained offline using a growing and pruning algorithm. The adaptive observer is used to estimate HPT inlet temperature, thrust and stall margins.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correlation Measure-Based Stall Margin Estimation for a Single-Stage Axial Compressor;Journal of Engineering for Gas Turbines and Power;2011-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3