Advanced Turbine Aerodynamic Design Utilizing a Full Stage CFD

Author:

Ito Eisaku1,Aoki Sunao2,Muyama Akimasa1,Masada Junichiro1

Affiliation:

1. Mitsubishi Heavy Industries, Ltd., Takasago, Japan

2. Mitsubishi Heavy Industries, Ltd., Tokyo, Japan

Abstract

Gas turbines for power generation are required to operate more efficiently than ever before for both economic and environmental reasons. Because of this situation, an advanced multistage turbine design and optimization system is required to improve upon existing turbine designs where viscous CFD codes had already been applied on a single row or single stages basis. An advanced CFD code for multistage design applications has been developed at Mitsubishi Heavy Industries (MHI) and has been applied to the redesign of a four stage single shaft turbine. The front 3 stages of the turbine are highly cooled using about 20% cooling air. The outstanding performance of this redesigned turbine has been demonstrated at MHI’s engine test facility. This paper focuses on the customization of the Denton code [5] for industrial usage, the validation of the customized code employing experimental data, and finally the use of the code in executing a successful redesign. Code development and validation are discussed in terms of prediction accuracy for the basic aerodynamic design parameters such as exit flow angle and cascade losses. Through-flow design parameters such as pressure ratio and reaction of each stage are also addressed. Especially important in modern high temperature turbines is the location and distribution of cooling and leakage air being introduced into the main gas-path. The proper treatment of these flows is very important because of the mixing losses and the temperature migration downstream. These important considerations in any analysis approach are discussed and it is shown how they are treated in the customized CFD code. Consistency between the customized CFD code and other parts of the existing aerodynamic design procedure are carefully examined. This is important because aerodynamic parameters have different modeling fidelities in the different parts of the design system. Computer execution times are a very important consideration when utilizing advanced CFD codes. This issue is addressed from the perspective of an industrial design organization. In validating the customized code, special attention was placed on tip clearance leakage flow behavior and seal air migration from the hub wall. Local changes of total pressure and temperature distributions affect the local velocity triangles and local static pressure distributions on the airfoil and end-wall surfaces. Airfoil section geometry and three-dimensional stacking to maximize the turbine efficiency are also considered and discussed. The validated code was subsequently used to execute a redesign of a large frame industrial turbine. This is discussed in some detail. The redesigned turbine has completed full scale engine testing and has been shown to have met all design goals. The CFD predictions are compared with special measurements taken in the engine such as the inter-stage span-wise total pressure and temperature distributions as well as the efficiency trend versus engine load. These comparisons prove the capability of the advanced multistage CFD code.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hot Streak and Vane Coolant Migration in a Downstream Rotor;Journal of Turbomachinery;2012-05-07

2. Multi-Objective Design Optimization for a Steam Turbine Stator Blade Using LES and GA;Journal of Computational Science and Technology;2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3