Time-Space Evolution of Secondary Flow Structures in a Two-Stage Low-Speed Turbine

Author:

Puddu Pierpaolo1,Palomba Chiara1,Nurzia Franco1

Affiliation:

1. University of Cagliari, Cagliari, Italy

Abstract

The aim of this work is to highlight the unsteady effects related to wake-blade and blade rows interactions, but also the time-space evolution of secondary flow structures in a two-stage low-speed turbine model designed and constructed to perform unsteady measurements with different techniques [1]. In this case attention has been addressed to the analysis of the flow field in the first stage of the turbine model. Measurements are performed with aerodynamic probes downstream of the first stator and using a single slanted hot-wire anemometer downstream of the first rotor. Time-dependent relative flow field downstream of the first rotor (obtained from phase-locked averaging technique) have been reconstructed for different relative positions between stator and rotor blades. From these results the time-dependent secondary flow vectors have been obtained as well. The mean reference flow used to determine the secondary flow structure has been evaluated for each frame by mass-averaged technique. The evolution of the secondary flow structure due to the influence of the upstream and downstream stators on the first rotor has been investigated. The main unsteady effects put in evidence the variation of the intensity and spatial extension of the vortex flow structure.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3