Unsteady Heat Transfer Topics in Gas Turbine Stages Simulations

Author:

Adami Paolo1,Salvadori Simone1,Chana Kam S.2

Affiliation:

1. University of Florence, Florence, Italy

2. QinetiQ, Farnborough Hants, UK

Abstract

High pressure gas turbine stages are nowadays working under very challenging conditions. An usual HP stage design is based on transonic highly loaded blades cooled through impingement and film cooling techniques. An important research field for such type of turbine stages is presently represented by the investigation of unsteady performances for loss reduction and heat transfer optimization. Two special issues related to the unsteady stage interaction are addressed in the present work: the first concerns the casing/tip leakage flow, the second the effect and redistribution of inlet temperature hot-spots. The investigation of both requires unsteady modeling since these phenomena are mostly driven by the rotor-stator interaction. High temperature spots, for example, travel through the stator vane as a “hot streaks” of fluid that is mainly redistributed and steered: a simple model of this process is known as Kerrebrock and Mikolajczak’s “segregation effect”. A series of steady and unsteady simulations have been made on the HP MT1 turbine stage test rig of QinetiQ. Given an inlet uniform total pressure field, three different total temperature distributions have been simulated. The first is a uniform reference distribution of total temperature, while the other two non-uniform distributions have been obtained from experimental data with a different alignment with respect to the NGV leading edge. The numerical results have been compared with the experimental values provided by QinetiQ. The comparisons have been discussed focusing on the rotor blade and casing unsteady pressure and heat transfer rate.

Publisher

ASMEDC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3