Shaped-Hole Film Cooling With Pulsed Secondary Flow

Author:

Ou Shichuan1,Rivir Richard B.1

Affiliation:

1. U.S. Air Force Research Laboratory, Wright Patterson AFB, OH

Abstract

The effects of the coolant jet pulsing frequency (PF), duty cycle (DC), and hole shape geometry on heat transfer coefficient and film effectiveness were investigated with a film hole located on a semicircular leading edge test model with an afterbody. Cylindrical and diffusion-shaped holes located at 21.5° from the stagnation line were investigated. An infrared thermography technique with a single transient test was used to determine both the heat transfer coefficient and film effectiveness. Spanwise averaged heat transfer coefficient and film effectiveness were computed from the local values for all test conditions under the same Reynolds number (Re) of 60,000 and density ratio (DR) of 1.11. A dimensionless Frossling number (Fr) was used to represent the heat transfer coefficient. The effects of duty cycles of 50%, 75%, and 100% (continuous coolant) on film effectiveness and heat transfer coefficient were investigated at coolant jet pulsing frequencies of 5 Hertz (Hz) and 10 Hertz. The duty cycle and pulsing frequency were controlled by the opening and closing time settings of two synchronized pulsed valves. The blowing parameters investigated included continuous coolant at the blowing ratios (M) of 0.75, 1.00, 1.50 and 2.00. The subsequent pulsed cases for a combination of pulsing frequency and duty cycle were varied from the corresponding continuous case without changing the coolant flow rate (or blowing ratio) setting for a total of 40 cases for the shaped and cylindrical film holes. The shaped hole provides higher local film effectiveness values than the classical cylindrical hole when coolant flow is steady at M = 1.00. The higher local film effectiveness for the shaped hole was also observed for pulsed cases at M = 1.50 (Meff = 1.25) and M = 2.00 (Meff = 1.07) due to wider film spreading or coverage. The pulsed coolant cases provide higher spanwise averaged film effectiveness than the continuous coolant at M = 1.50 for both hole geometries. In contrast to the film effectiveness, the spanwise averaged Frossling numbers of pulsed coolant are lower compared to the continuous coolant for both hole shapes at the same blowing ratio. Combining the effects of heat transfer coefficient and film effectiveness, one can compute a relative heat load ratio to evaluate the performance of the film cooling. The pulsed coolant cases in general perform better than continuous coolant. The shaped hole geometry provides better film cooling performance than the cylindrical hole geometry for all blowing ratios including the continuous and the pulsed coolant cases studied.

Publisher

ASMEDC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3