Automated Multiobjective Optimisation in Axial Compressor Blade Design

Author:

Voß Christian1,Aulich Marcel1,Kaplan Burak1,Nicke Eberhard1

Affiliation:

1. German Aerospace Center, Cologne, Germany

Abstract

This paper presents an automated multiobjective design methodology for the aerodynamic optimisation of turbomachinery blades. In this approach several operating-points of the compressor are considered and the flow-characteristics of the different flow-solutions are combined to one or more objective functions. The optimisation strategy is based on multiobjective asynchronous evolutionary algorithms (MOEA’S) which are accelerated using additive local neural networks and kriging procedures. Common operators: Mutation, Crossover and Differential-Evolution are used to create a new population. In addition to these common operators the optimisation runs temporarily on the response-surface created by the neural networks and/or kriging-processes respectively. Only the Pareto-optimal solutions obtained from this metamodel are evaluated using the numerical expensive flow-solver. Therefore, the response-surface is just a new operator that creates auspicious members. One of the main differences between the presented code to usual and traditional MOEA’S is the selection of parents. While traditional codes choose potential parents of a new population from the previous population, the current method selects parents from the database of all evaluated members. This approach allows the user to run the optimisation asynchronously and with a smaller size of population, treducing numerical costs, without influencing the diversity of the optimal solutions over the whole Pareto-front. This aspect is very important when evaluating very complex and/or discontinuous fronts.

Publisher

ASMEDC

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3