Affiliation:
1. University of Stuttgart, Stuttgart, Germany
2. ALSTOM (Schweiz) AG, Baden, Switzerland
Abstract
Internal cooling schemes for blades in a gas turbine engine often are subject to compromises between increased pressure losses in return for greater levels of heat transfer required to maintain durability levels in the engine’s harsh environment. Rib configurations have been the subject of much study in past years, however these configurations are normally presumed to be used in “full-coverage” mode, meaning that the ribs are placed in the channel in a continuous and uniform manner. This study investigates the interaction between the bend effects downstream of a 180° bend, which cause higher local heat transfer, and the effect of ribs. Some of the ribs directly downstream of the 180° bend in the 2nd leg of a two pass high aspect ratio (4:1) channel were removed and the effect on heat transfer was assessed. Experimental results showed that the heat transfer level recovered quickly once ribs were encountered. As expected, some decrease in heat transfer was observed in the region where ribs were removed; however total pressure losses in the channel were also much lower. Results include detailed two-dimensional heat transfer distributions determined by the transient liquid crystal method as well as an analysis of the balance between pressure recovery and local heat transfer levels. Generally, for the accuracy of the transient liquid crystal technique in complex three-dimensional flows, strongly varying fluid temperatures present in and downstream of the bend region must be taken into account. For this study, time and position dependent fluid temperature distributions were measured to account for these effects, making it possible to obtain high quality heat transfer results in those regions.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献