Passive Damper LP Tests for Controlling Combustion Instability

Author:

Macquisten M. A.1,Holt A.1,Whiteman M.1,Moran A. J.1,Rupp J.2

Affiliation:

1. Rolls-Royce plc, Derby, UK

2. University of Karlsruhe, Karlsruhe, Germany

Abstract

The drive to low emissions from GT combustors has pushed manufacturers towards leaner combustion systems. Lean combustion systems are susceptible to thermo acoustic or combustion instabilities, which can significantly limit the operation of the GT in terms of performance and emissions. Combustion instability is the result of coupling between fluctuations in the heat release rate and pressure waves. The occurrence of instability dependent on (a) satisfying the Rayleigh criterion and (b) the growth must exceed the losses of acoustic energy. The growth of instability can be controlled by increasing the level of acoustic damping via a Helmholtz resonator and through viscous damping. Design rules for a passive damper have been developed through the EU funded project called PRECCINSTA (Prediction and control of combustion instabilities in tubular and annular combustion systems) by the University of Cambridge. These design rules are for a doubled-skinned perforated liner where a biasing flow is used to dissipated sound energy. The sound dissipation mechanism is via vortex formation. These design rules were then validated against atmospheric and intermediate pressure combustion tests at Rolls-Royce for self-excited and forced excited oscillations. This paper summaries these tests and gives the results for a simple perforated liner as a passive acoustic damper.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3