Embedded 3D Printing of PDMS-Based Microfluidic Chips for Biomedical Applications

Author:

Hua Weijian1,Mitchell Kellen1,Raymond Lily1,Valentin Naima1,Coulter Ryan1,Jin Yifei1

Affiliation:

1. University of Nevada, Reno Department of Mechanical Engineering, , 1664 N. Virginia Street, MS 0312, Reno, NV 89557

Abstract

Abstract Microfluidic devices made from polydimethylsiloxane (PDMS) have diverse biomedical applications. However, due to the poor printability of PDMS, current 3D printing techniques are rarely used to fabricate microfluidic devices. This study aims to investigate a fumed silica-PDMS suspension that can function as a matrix bath for embedded 3D printing (e-3DP) purposes, making it technically feasible to print microfluidic chips with complex embedded channels via low-cost extrusion 3D printing. The rheological properties, mechanical properties, transparency, and filament fidelity of the fumed silica-PDMS suspension have been systematically studied. It is found that the addition of fumed silica particles can effectively change PDMS from a viscous solution to a yield-stress suspension with suitable rheological properties for e-3DP. Also, the mechanical properties of the crosslinked fumed silica-PDMS are enhanced with an increased concentration of fumed silica. Although the transparency of PDMS has been lessened by mixing it with fumed silica particles, the visibility of the printed microfluidic chips is still acceptable. The filament fidelity has been studied by embedded printing filaments using a sacrificial ink in the fumed silica-PDMS suspension. Finally, two representative microfluidic chips for biomedical applications have been successfully printed to validate the effectiveness of the proposed fumed silica-PDMS suspension-enabled e-3DP method.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3