The Effects of the Surface Topography of Micromachined Titanium Substrata on Cell Behavior in Vitro and in Vivo

Author:

Brunette D. M.1,Chehroudi B.1

Affiliation:

1. Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, B.C. V6T 1Z3 Canada

Abstract

Surface properties, including topography and chemistry, are of prime importance in establishing the response of tissues to biomaterials. Microfabrication techniques have enabled the production of precisely controlled surface topographies that have been used as substrata for cells in culture and on devices implanted in vivo. This article reviews aspects of cell behavior involved in tissue response to implants with an emphasis on the effects of topography. Microfabricated grooved surfaces produce orientation and directed locomotion of epithelial cells in vitro and can inhibit epithelial downgrowth on implants. The effects depend on the groove dimensions and they are modified by epithelial cell–cell interactions. Fibroblasts similarly exhibit contact guidance on grooved surfaces, but fibroblast shape in vitro differs markedly from that found in vivo. Surface topography is important in establishing tissue organization adjacent to implants, with smooth surfaces generally being associated with fibrous tissue encapsulation. Grooved topographies appear to have promise in reducing encapsulation in the short term, but additional studies employing three-dimensional reconstruction and diverse topographies are needed to understand better the process of connective-tissue organization adjacent to implants. Microfabricated surfaces can increase the frequency of mineralized bone-like tissue nodules adjacent to subcutaneously implanted surfaces in rats. Orientation of these nodules with grooves occurs both in culture and on implants. Detailed comparisons of cell behavior on micromachined substrata in vitro and in vivo are difficult because of the number and complexity of factors, such as population density and micromotion, that can differ between these conditions.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3