Numerical Model of Fluid Flow and Oxygen Transport in a Radial-Flow Microchannel Containing Hepatocytes

Author:

Ledezma G. A.1,Folch A.1,Bhatia S. N.1,Balis U. J.1,Yarmush M. L.1,Toner M.1

Affiliation:

1. Center for Engineering in Medicine; Surgical Services, Massachusetts General Hospital; Shriners Burns Hospital; Harvard Medical School, Boston, MA 02114

Abstract

The incorporation of monolayers of cultured hepatocytes into an extracorporeal perfusion system has become a promising approach for the development of a temporary bioartificial liver (BAL) support system. In this paper we present a numerical investigation of the oxygen tension, shear stress, and pressure drop in a bioreactor for a BAL composed of plasma-perfused chambers containing monolayers of porcine hepatocytes. The chambers consist of microfabricated parallel disks with center-to-edge radial flow. The oxygen uptake rate (OUR), measured in vitro for porcine hepatocytes, was curve-fitted using Michaelis–Menten kinetics for simulation of the oxygen concentration profile. The effect of different parameters that may influence the oxygen transport inside the chambers, such as the plasma flow rate, the chamber height, the initial oxygen tension in the perfused plasma, the OUR, and Km was investigated. We found that both the plasma flow rate and the initial oxygen tension may have an important effect upon oxygen transport. Increasing the flow rate and/or the inlet oxygen tension resulted in improved oxygen transport to cells in the radial-flow microchannels, and allowed significantly greater diameter reactor without oxygen limitation to the hepatocytes. In the range investigated in this paper (10 μm < H < 100 μm), and for a constant plasma flow rate, the chamber height, H, had a negligible effect on the oxygen transport to hepatocytes. On the contrary, it strongly affected the mechanical stress on the cells that is also crucial for the successful design of the BAL reactors. A twofold decrease in chamber height from 50 to 25 μm produced approximately a fivefold increase in maximal shear stress at the inlet of the reactor from 2 to 10 dyn/cm2. Further decrease in chamber height resulted in shear stress values that are physiologically unrealistic. Therefore, the channel height needs to be carefully chosen in a BAL design to avoid deleterious hydrodynamic effects on hepatocytes.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3