Initial Input Selection for Iterative Learning Control

Author:

Freeman Chris T.,Alsubaie Muhammad Ali1,Cai Zhonglun1,Rogers Eric1,Lewin Paul L.1

Affiliation:

1. School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK

Abstract

Iterative learning control algorithms have been shown to offer a high level of performance both theoretically and when applied to practical applications. However, the trial-to-trial convergence of the error is generally highly dependent on the initial choice of input applied to the plant. Techniques are therefore developed, which generate an optimal initial input selection, and the effect this has on the error over subsequent trials is examined. Experimental benchmarking is undertaken using a gantry robot test facility.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference14 articles.

1. Bettering Operations of Robots by Learning;Arimoto;J. Rob. Syst.

2. A Survey of Iterative Learning Control;Bristow;IEEE Control Syst. Mag.

3. Iterative Learning Control: Brief Survey and Categorization;Ahn;IEEE Trans. Syst. Man Cybern., Part C Appl. Rev.

4. Iterative Learning Control Using a Basis Signal Library;Hoelzle

5. Incorporation of Experience in Iterative Learning Controllers Using Locally Weighted Learning;Arif;Automatica

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rational Feedforward Tuning Using Variance-Optimal Instrumental Variables Method Based on Dual-Loop Iterative Learning Control;IEEE Transactions on Industrial Informatics;2023-03

2. References;Iterative Learning Control Algorithms and Experimental Benchmarking;2023-01-13

3. Enhancing Flatbed Printer Accuracy and Throughput: Optimal Rational Feedforward Controller Tuning Via Iterative Learning Control;IEEE Transactions on Industrial Electronics;2017-05

4. Iterative Learning Control With Predictive Trial Information: Convergence, Robustness, and Experimental Verification;IEEE Transactions on Control Systems Technology;2016-05

5. Feedforward Input Generation Based on Neural Network Prediction in Multi-Joint Robots1;Journal of Dynamic Systems, Measurement, and Control;2014-01-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3