Frequency Lock-In Phenomenon of Vortex Induced Vibration of a Rotating Blade Considering Bending-Torsion Coupling Effect

Author:

Ren Yuankai1,Lu Jianwei1,Deng Gaoming1,Wu Bofu1,Zhou Dinghua1

Affiliation:

1. Hefei University of Technology School of Automotive, and Transportation Engineering, , Hefei, Anhui 230000 , China

Abstract

Abstract A rotating thin blade with bend-torsional coupling subjected to vortex induced vibration (VIV) is considered in this paper. It is necessary to study the motion coupled bending torsion due to the discordant centroid and shear center and the effect of centrifugal force at high-speed. The blade with a single axisymmetric section is regarded as a beam instead of an oscillator. The motion equation coupled bending-torsion of the blade is established by using the Euler–Lagrange equations, and the effect of centrifugal force is also employed. Vortex shedding is described by a nonlinear oscillator satisfying Van Der Pol (VDP) equation. Ritz–Galerkin method is employed to simplify the equations of the blade, and the interaction between the bending and torsion modes of blade and wake modes is discussed. The motion equation is simplified based on the contribution of the blade flutter mode. Furthermore, the single-mode approximation is used to investigate the effects of mass ratio, damping, and coupling coefficient on the locking phenomenon. It is also analyzed that the variation of flutter amplitude and locking region of the rotating blade considering bending-torsion coupling.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3