Evaluation of Heat Flux Distribution on Flat Plate Compound Parabolic Concentrator With Different Geometric Indices

Author:

Shanmugam Mathiyazhagan1,Maganti Lakshmi Sirisha1

Affiliation:

1. SRM University–AP Department of Mechanical Engineering, School of Engineering and Sciences, , Amaravati, Andhra Pradesh 522502 , India

Abstract

AbstractThe Compound Parabolic Concentrator (CPC), when coupled with the photovoltaic system, namely the Concentrated Photovoltaic Thermal System (CPVT), makes utilizing solar energy efficient. The major challenge that hinders the electrical and thermal performance of the CPC–CPVT system is the non-uniform heat flux distribution on the absorber surface. In the present paper, detailed ray-tracing simulations have been carried out to understand the heat flux distribution characteristics of CPC with different geometrical conditions, and those are concentration ratio, truncation ratio, incident angle, and average heat flux on the absorber surface. To have a thorough understanding, the analysis has been carried out in multiple steps. First, it is performed by analyzing the effect of concentration ratio and incident angle on heat flux distribution characteristics at a fixed truncation ratio. Second, investigations have been carried out to understand the heat flux distribution characteristics at different truncation ratios and different incident angles by keeping the concentration ratio constant. Local concentration ratio and non-uniformity index have been employed to quantify the non-uniformity of heat flux distribution on the absorber surface. It has been observed that the 0-deg incidence angle is the most effective angle to achieve uniform heat flux distribution on the absorber surface. This paper sheds insight into the heat flux distribution characteristics on the absorber surface of a CPC–CPVT system which can be used by the research community for designing an effective CPVT system from the perspective of uniform heat flux distribution on the absorber surface.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3