Application of Topology Optimization and Design for Additive Manufacturing Guidelines on an Automotive Component

Author:

Reddy K. Sai Nithin1,Maranan Vincent1,Simpson Timothy W.1,Palmer Todd2,Dickman Corey J.2

Affiliation:

1. Pennsylvania State University, University Park, PA

2. Applied Research Laboratory, State College, PA

Abstract

Topology optimization is a well-established engineering practice to optimize the design and layout of parts to create lightweight and low-cost structures, which have historically been difficult, or impossible, to make. Additive Manufacturing (AM) provides the freedom to fabricate the complex and organic shapes that topology optimization often generates. In this paper we use topology optimization to create lightweight designs while conforming to additive manufacturing constraints related to overhanging features and unsupported surfaces when using metallic materials. More specifically, we use design for additive manufacturing (DfAM) rules along with topology optimization to study the tradeoffs between the weight of the part, support requirements, manufacturing costs, and performance. The case study entails redesigning an upright on the SAE Formula student racecar to reduce support structures and manufacturing and material cost when using Direct Metal Laser Sintering (DMLS). Manufacturing the optimized design without applying DfAM rules required support material up to 202.4% of the volume of the model. Using DfAM, the upright is redesigned and manufactured with supports requiring less than 15% of the volume of the model. The results demonstrate the challenges in achieving a balance between weight reduction, manufacturing costs, and factor of safety of the design.

Publisher

American Society of Mechanical Engineers

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3