The Hybrid Predictive Dynamics Method for Analysis, Simulation and Prediction of Human Motion

Author:

Hariri Mahdiar1

Affiliation:

1. Wichita State University, Wichita, KS

Abstract

The ‘Hybrid Predictive Dynamics Method for Digital Human Modeling’ is analyzed in this work. The ‘Hybrid’ prefix mentioned in the literature recently [1], refers to the use of motion capture data for improving human motion simulations. This use of motion capture compensates for the inherent weaknesses of purely theoretical motion prediction due to deficiencies in computational power or available theoretical backgrounds. In this work, it is shown that while using the ‘Hybrid’ the more precisely and finely the human motion is modeled (if computational and theoretical limitations allow), the less will be the need for the ‘Hybrid’ method and the more will the human model be able to change the prediction if the inputs are varied (cause and effect). Several human motion scenarios are mentioned in this work. These motion tasks are: “Jogging around Markers”, “Rolling Over”, “Getting up from Prone”, “Vertical Jumping” and “Kneeling and Aiming”. The digital human model is a full-body, three dimensional model with 55 degrees of freedom. Six degrees of freedom specify the global position and orientation of the coordinate frame attached to the pelvic point of the digital human and 49 degrees of freedom represent the revolute joints which model the human joints and determine the kinematics of the entire digital human. Motion is generated by a multi-objective optimization approach. The optimization problem is subject to constraints which represent the limitations of the environment, the digital human model and the motion task. Design variables are the joint angle profiles. All the forces, inertial, gravitational as well as external, are known, except the ground reaction forces. The feasibility of the generation of that arbitrary motion by using the given ground contact areas is ensured by using the well-known Zero Moment Point (ZMP) constraint.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization-Based Simulation of the Motion of a Human Performing a Horizontal Drop Jump;Advances in Intelligent Systems and Computing;2017-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3