Application of Bio-Inspired Design to Minimize Material Diversity

Author:

McCullar Katie S.1,Rhodes Preston C.1,Underhill S. Austin1,Nagel Jacquelyn K. S.1

Affiliation:

1. James Madison University, Harrisonburg, VA

Abstract

Bio-inspired design, or biomimicry, is an approach to innovation that takes nature’s time-tested patterns, forms, functions, processes, and materials and uses them to develop engineering solutions. In this project we take inspiration from biological morphologies to develop new forms for semi-recyclable products. Biological systems exhibit multi-functionality from form, not necessarily material, which offers inspiration for product life-cycle management. The goal is to better understand the connection between form and function as found in nature to enable sustainable product design and enhance additive manufacturing processes. Through the application of bio-inspired design product recyclability is increased through minimization of material diversity while still achieving desired functions. One inspiring biological morphology that has been utilized across multiple biological kingdoms and in this research is variations in hardness and flexibility found in alternating layers that are used to provide strength, durability and protection. Another inspiring morphology considered in this research is the backbone of water-diving birds, which consists of an intricately braided spine with parallel holes along each side. These holes allow for shock absorbance and force dispersion. These multi-function forms have resulted in the redesign of a semi-recyclable product fabricated using additive manufacturing to create a product that is made from a single material yet still achieves all necessary functions. Key contributions of this research include approaches for additive manufacturing strategies such as material utilization that align with a product’s life cycle, thus increasing the recyclability of the product.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3